FLUORINE-CONTAINING AZOLES.

4. 2-PERFLUOROPOLYOXAALKYL-SUBSTITUTED PERIMIDINES

V. G. Poludnenko, O. B. Didinskaya, and A. F. Pozharskii

UDC 547.856.7'412.722: 542.945.24

The reaction of 1,8-naphthylenediamine with perfluoropolyoxaalkanoyl fluorides and ω -fluorosulfonylperfluropolyoxaalkanoyl fluorides yielded 2-perfluoropolyoxaalkyl-substituted perimidines. Their basicity and sulfonation by sulfuric acid were studied.

Perimidines containing a perfluorinated substituent at the two position have been very little studied. The first examples of them were obtained comparatively recently by the reaction of 1,8-naphthylenediamine with trifluoroacetic anhydride or the acid chlorides of perfluorinated carboxylic acids [2]. The introduction of a perfluorinated substituent leads to a significant change in the chemical properties of the perimidine ring, and to the appearance of insecticidal and acaricidal activity in the compounds [3]. Very effective antistatic agents were observed among them [4].

We investigated the possible isolation of perimidine derivatives with a higher 2-per-fluoropolyoxaalkyl substituent from 1,8-naphthylenediamine and the acid fluorides (I) and (II) of perfluorocarboxylic acids. It was established that 1,8-naphthylenediamine reacts with the ω -fluorosulfonylperfluoropolyoxaalkanoyl fluorides (Ia-c) and the perfluoropolyoxaalkanoyl fluorides (IIa-c) in the medium of boiling absolute diethyl ether with the formation of the 2-(ω -fluorosulfonylperfluoropolyoxaalkyl)perimidines (IIIa-c) or the 2-perfluoropolyoxaalkylperimidines (IVa-c) as the main products respectively with yields of 79-96%.

In contrast to the reaction of 1,8-naphthylenediamine with trifluoroacetic anhydride, the acid chlorides [2], and the acid bromides of fluoroacetic acids [5], the formation of the N,N'-diacyl derivatives of 1,8-naphthylenediamine is not observed in the given case. This can be explained by the larger steric hindrances with the entry of the second bulky ω -fluorosulfonylperfluoropolyoxaalkyl or perfluoropolyoxaalkyl substituent into the 1,8-naphthylenediamine molecule. The absence of monoacyl derivatives in the reaction products indicates the case of their cyclization in the experimental conditions.

Since the reaction of 1,8-naphthylenediamine with the acid fluorides (Ia-c) and (IIa-c) proceeds very regiospecifically, the perimidines (IIIa-c) and (IVa-c), which were isolated directly from the reaction mass, were chromatographically pure. They are readily identified by the doublet of the bands of stretching vibrations of the G-N and C-C bonds in the region

 $^{^{\}star}$ For communication 3, see [1].

Borislav Branch, State Scientific-research and Design Institute of the Chlorine Industry, Borislav 293760. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 973-975, July, 1986. Original article submitted March 10, 1985. Revision submitted August 7, 1985.

TABLE 1. Physicochemical Characteristics of the Perimidines (III) and (IV)

Com-	mp, C	Color	R _f Al ₂ O ₃ / chloroform	pK _a *	IR spectrum, ν , cm ⁻¹ (in CCL)				Found C,%	Empirical for- mula	cula-	Yield,
bonne					NH	C=N	C=C	FSO:			ted, C, %	
IIIa IIIb IIIc IVa IVb	89—90 Oi1 Oi1 85—86 Oi1	Orange Red Dark-red Orange Red Dark-red	0,93 0,91 0,84 0,95 0,95 0,90	3,31 3,18 	3435 3430 3440 3455 3440 3440	1640 1645 1645 1640 1643 1640	1600 1600 1605 1600 1605 1600	1465 1465 1470	38,4 34,5 31,8 42,8 35,1 34,1	C ₁₈ H ₇ F ₉ N ₂ O ₃ S C ₁₈ H ₇ F ₁₈ N ₂ O ₄ S C ₂₁ H ₇ F ₂₁ N ₂ O ₅ S C ₁₆ H ₇ F ₁₁ N ₂ O C ₁₉ H ₇ F ₁₇ N ₂ O ₂ C ₂₂ H ₇ F ₂₃ N ₂ O ₃	38,6 34,2 31,6 42,5 35,4 33,7	88 92 96 85 79 91

The value of the pka of the compounds (IIIc) and (IVb) was not measured.

TABLE 2. Characteristics of the Sulfonic Acids (V) and (VI)

Com-	mp. °C				Found	Empirical	Cal- culated	Yield,%	
pound	,	C=N	SO₃H	SO₂F	C, %	formula	C. %	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Va Vb Vc VIa VIb VIc	74—75 64—65 45—47 82—84 53—54 51—52	1640—1660 1645—1665 1640—1670 1640—1655 1640—1670 1640—1670	1060 1065 1070 1070 1075 1065	1445 1460 1460 —	33,4 30,1 28,3 36,4 32,2 28,0	C ₁₅ H ₇ F ₉ O ₆ N ₂ S ₂ C ₁₈ H ₇ F ₁₅ O ₉ N ₂ S ₂ C ₂₁ H ₇ F ₂₁ O ₁₂ N ₂ S ₂ C ₁₆ H ₇ F ₁₁ O ₄ N ₂ S C ₁₉ O ₇ F ₁₇ O ₅ N ₂ S C ₂₁ H ₇ F ₂₃ O ₆ N ₂ S	33,0 29,8 27,9 36,1 32,1 28,4	93 89 94 90 95 88	

of 1590-1650 cm⁻¹ (Table 1), which is characteristic of 2-substituted perimidines [6]. The presence of the absorption band of the FSO₂ group at 1465-1470 cm⁻¹ [7] in the IR spectra of the products of the reaction of 1,8-naphthylenediamine with the ω -fluorosulfonylperfluoropolyoxaalkanoyl fluorides (Ia-c) indicates that the reaction proceeds exclusively at the fluorocarbonyl group of the compounds (Ia-c).

The introduction of the 2-(ω -fluorosulfonylperfluoropolyoxaalkyl) or 2-perfluoropolyoxaalkyl substituents into the molecule of the perimidine of yellow color leads to the deepening of the color of the individual compounds to orange and dark-red. We determined the values of the pKa of some of the synthesized perimidines by the method of potentiometric titration in a 30% (vol.) aqueous ethanol solution at 22°C (Table 1). For comparison, the value of the basicity of the unsubstituted perimidine was measured under the same conditions; it was equal to 5.91. As was to be expected, the introduction of the 4-fluorosulfonylperfluoro-2-methyl-3-oxabutyl radical at the two position of perimidine [compound (IIIa)] produces a decrease of 2.6 in the basicity. The replacement of the CF₃ group by the SO₂F group has practically no effect on the basicity [compounds (IIIa) and (IVa)].

As in the case of the 2-difluoromethyl-, 2-trifluoromethyl-, and 2-perfluorohexylperimidines [8, 9], the sulfonation of the perimidine derivatives (III) and (IV) already proceeds exceptionally readily at the temperature of 10°C. On the basis of the data of the work [3], it can be assumed that the sulfonation reaction proceeds at the position six (seven). The yields of the monosulfonic acids (V) and (VI) reach 85-93%.

IIIa-c, IVa-c
$$\frac{\text{II}_2\text{SO}_4}{\text{10-15}^\circ}$$
 $\xrightarrow{\text{O}_3\text{S}}$ $\xrightarrow{\text{H}}$ $\xrightarrow{\text{N}}$ $\xrightarrow{\text{CF}(\text{OCF}_2\text{CF})}$ $\xrightarrow{\text{OCF}_2\text{CF}_2\text{-R}}$

III, V R=FSO₂; IV, VI R=CF₃; a n=0, b n=1, c n=2

The absorption bands of the sulfonyl group occur in the region of 1040-1060 cm-1 in the IR spectra of the sulfonic acids (V) and (VI) in mineral oil. The sulfonic acids obtained exist in the form of crystal hydrates and probably as the internal salts; this is indicated by the presence of the band at 1640-1670 cm-1, which is characteristic of the stretching vibrations of the C=N bonds in the perimidinium cations, in the IR spectra.

EXPERIMENTAL

The IR spectra were taken on a UR-20 spectrometer. The TLC was performed on aluminum oxide of IV degree of activity in chloroform. The pK_a values were determined according to [10].

The characteristics of the compounds (III)-(VI) are presented in the Tables 1 and 2.

 $2-(\omega$ -Fluorosulfonylperfluoropolyoxaalkyl)perimidines (IIIa-c) and 2-Perfluoropolyoxaalkylperimidines (IVa-c). To the solution of 0.79 g (5 mmole) of 1,8-naphthylenediamine in 20 ml of absolute diethyl ether are added 5 mmole of the ω -fluorosulfonylperfluoropolyoxaalkanoyl fluoride (IIa-c) or the perfluoropolyoxaalkanoyl fluoride (IIa-c) with intense stirring, at such a rate as to ensure the uniform boiling of the reaction mass. The mixture is maintained at 40°C for 30 min, and filtered. The filtrate is rapidly treated with 20-30 ml of a 5% aqueous solution of NH₄OH. The ether layer is separated. The chromatographically pure product, which is well sublimated in vacuo, is obtained after the evaporation of the solvent.

 $2-\omega$ -Fluorosulfonylperfluoropolyoxaalkyl)perimidine-6(7)-sulfonic acids (Va-c) and 2-(Perfluoropolyoxaalkyl)perimidine-6(7)-sulfonic acids (VIa-c). To 10 ml of concentrated sulfuric acid (d. 20 1.82) are gradually added 3.2 mmole of the 2-(ω -fluorosulfonylperfluoropolyoxaalkyl)perimidine (IVIa-c) or the 2-perfluoropolyoxaalkylperimidine (IVa-c) at the temperature of 10-15°C. The dark-red solution obtained is stirred at room temperature for 10 min. Then, the reaction mass is poured onto 20 g of crushed ice with stirring. The dark-red precipitate is filtered off; it is dried at 35-40°C (2 mm of Hg stem) and recrystallized from alcohol.

LITERATURE CITED

- 1. V. G. Poludnenko, O. B. Didinskaya, and A. F. Pozharskii, Khim. Geterotsikl. Soedin., No. 4, 524 (1984).
- A. F. Pozharskii, G. G. Yurchuk, and L. L. Gervits, Khim. Geterotsikl. Soedin., No. 3, 413 (1979).
- 3. G. G. Yurchuk, Dissertation, Candidate of Chemical Sciences, Rostov-on-Don (1981).
- 4. Yu. I. Vasilenok, V.N. Lagunova, A. F. Pozharskii, O. M. Bagrova, and G. G. Yurchuk, Inventor's Certificate No. 789,562 (USSR); Byull. Izobr., No. 47, 112 (1980).
- 5. G. G. Yurchuk and A. F. Pozharskii, Khim. Geterotsikl. Soedin., No. 8, 1106 (1981).
- 6. V. I. Minkin, Yu. A. Zhdanov, I. D. Sadekov, O. A. Raevskii, and A. D. Garnovskii, Khim. Geterotsikl. Soedin., No. 6, 1100 (1967).
- 7. K. Kimoto, H. Miyauchi, J. Ohmura, M. Ebisawa, and T. Hane, Patent No. 8,017,838 (Japan); Chem. Abstr., 93, 27443 (1980).
- 8. A. F. Pozharskii, I. V. Borovlev, G. G. Yurchuk, O. M. Bagrova, Yu. I. Vasilenok, and V. N. Lagunova, Khim. Geterotsikl. Soedin., No. 4, 550 (1980).
- 9. A. F. Pozharskii, V. V. Kuz'menko, V. N. Koroleva, and G. G. Yurchuk, Khim. Geterotsikl. Soedin., No. 5, 691 (1980).
- 10. D. J. Raliger and M. M. Joullie, J. Org. Chem., 29, 476 (1964).